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The main result of this paper characterizes generalizations of Zolotarev polynomials
as extremal functions in the Kolmogorov�Landau problem

f (m)(0) � sup, f # WrH |[0, 1], & f &C[0, 1]�B, (C)

where |(t) is a concave modulus of continuity, r, m : 1�m�r, are integers, and
B�B0(r, m, |).

We show that the extremal functions ZB have r+1 points of alternance and the
full modulus of continuity of Z (r)

B : |(Z (r)
B ; t)=|(t) for all t # [0, 1]. This generalizes

the Karlin's result on the extremality of classical Zolotarev polynomials in the
problem (C) for |(t)=t and all B�Br . � 1997 Academic Press

0. INTRODUCTION

0.1. Classical Zolotarev Polynomials

The family [ZB]B>0 of classical Zolotarev polynomials of degree r+1
on the interval [0, 1] can be characterized as follows:

for any B>0, there exist points [{i (B)]r
i=0 , 0=: {0(B)< } } } <{r(B)�1

and such a polynomial ZB(x)=xr+1�(r+1)!+�r
i=0 ai xi that

ZB({i (B))=(&1)r+1+i &ZB&C[0, {r (B)]=(&1)r+1+i B, i=0, ..., r.

(0.1)

Let Cr(x) be the Chebyshev polynomial of degree r+1 with the leading
coefficient 1�(r+1)!:

Cr(x)=
2&2r&1

(r+1)!
cos[(r+1) arc cos(2x&1)], x # [0, 1]. (0.2)

Let Lr :=&Cr& C[0, 1]=2&2r&1�(r+1)! By (0.2),

[Ti=
1
2 (1+cos(?i�(r+1)))]r+1

i=0
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is the collection of alternance points of Cr(x) on the interval [0, 1]:

Cr(Ti)=(&1)r+1+i &Cr&C[0, 1]=(&1)r+1+i Lr , i=0, ..., r+1. (0.3)

Let Kr :=Lr } T &(r+1)
r . For 0<B�Kr , the Zolotarev polynomial ZB(x) is

a properly rescaled and dylated Chebyshev polynomial

ZB(x)=*&(r+1)
B Cr(*Bx), *B :=

Lr

B
, (0.4)

with r+1 points of alternance [{i (B)=*BTi]r
i=0 on the interval [0, {r(B)]. In

the case B # [Lr , Kr], the collection [{i (B)]r
i=0 is the set of alternance

points of the function ZB on the entire interval [0, 1]:

ZB({i (B))=(&1)r+1+i &ZB&C[0, 1]=(&1)r+1+i B, i=0, ..., r. (0.5)

For B>Kr , the Zolotarev polynomial ZB(t) admits an expression in terms
of elliptic functions [1, 12].

For n # N, let us introduce the Sobolev class

W n
�[a, b]=[ f # Cn&1[a, b] | f (n&1) is abs. cont. and & f (n)&L�[a, b]�1].

(0.6)

S. Karlin [7, p. 419] showed that the Zolotarev polynomial ZB enjoys the
extremal property

(&1)r+1+m Z (m)
B (0)=sup[ f (m)(0) | f # W r+1

� [0, 1], & f &C[0, {r (B)]�B].

(0.7)

In view of properties (0.5) and (0.7), in the case B # [Lr , Kr], the function
ZB is extremal in the Kolmogorov�Landau problem

f (m)(0) � sup, f # W r+1
� [0, 1], & f &C[0, 1]�B. (0.8)

Definition 0.1. Let f be a continuous function on the interval [a, b].
The function

|( f ; t)= sup

|x&y|�t
x, y # [a, b]

| f (x)& f ( y)|, t # [0, b&a], (0.9)

is called the modulus of continuity of the function f.

The functional class W r+1
� [0, 1] is defined by the constraint

& f (r+1)& L� (I )�1, equivalent to inequalities |( f (r), t)�t for all t # [0, 1].
In our generalizations, we consider the classes of functions defined by the
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continuum of inequalities of the form |( f (r), t)�|(t), for t # [0, 1] and
some fixed concave modulus of continuity |. Such constraints enable us not
only to control upper bounds of the function f (r+1) but also to retain
information on the order of growth of the r th derivative f (r).

This discussion leads us to the definition of functional classes WrH|[0, 1]
with a majorizing modulus of continuity and generalizations of Zolotarev
polynomials in WrH |[0, 1].

0.2. Functional Classes WrH |[a, b]

Let us introduce the notion of a concave modulus of continuity on the
half-line R+.

Definition 0.2. A function |( } ) : R+ � R+, is called a concave modulus
of continuity on R+ , if the following conditions are satisfied:

(1) |(0)=0;

(2) |(t1)�|(t2), if 0�t1�t2 ;
(0.10)

(3) |(:t1+(1&:) t2)�:|(t1)+(1&:) |(t2), for all : # [0, 1],

and t1 , t2 # R+ .

Definition 0.3. Let |(t) be a concave modulus of continuity on R+ .
The functional class WrH |[a, b] is defined as

WrH |[a, b] :=[x # Cr[a, b] | |(x (r) ; t)�|(t), t # [0, b&a]]. (0.11)

In the case r=0 we also use the notations

H|[a, b] :=W0H |[a, b], H |
0 [a, b] :=[ f # H|[a, b] | f (a)=0].

(0.12)

The standard Sobolev class W r+1
� [a, b] is a particular case of the class

WrH |~ [a, b] with |~ (t)=t. Another example is provided by the Ho� lder
modulii of continuity |:(t)=t:, 0<:�1. In this case, we denote

WrH :[a, b] :=WrH|:[a, b]. (0.13)

We mention that classes WrH |[a, b] were introduced in 1946 by S. M.
Nikol'skii [10] in connection with approximation of functions by Fourier
sums.
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0.3. Zolotarev |-Polynomials

Fix r, m # N : 1�m�r and a concave modulus of continuity | on R+ .
Our main goal in this paper is to construct a family [ZB=ZB, r, m, |]B>0

of functions endowed with the properties

(1) there exist such points [{i(B)]r
i=0, 0={0(B)< } } } <{r (B)�1, that

ZB({i (B))=(&1) i+m&ZB&C[0, {r (B)] , i=0, ..., r ;
(0.14)

(2) |(Z (r)
B ; t)=|(t), 0�t�1;

(3) Z(m)
B (0)=sup[ f (m)(0) | f # W rH|[0, 1], & f & C[0, {r (B)]�B].

If | is a linear modulus of continuity |M(t)=Mt, M>0, then

|( f (r) ; t)=|M(t), t # [0, 1] � f (r)(t)=C\Mt, C # R, t # [0, 1],

i.e., f is a polynomial of degree r+1 with the leading coefficient M�(r+1)!
Therefore, it is natural that functions ZB with features (0.14) generalizing
the properties of classical Zolotarev polynomials will be called the Zolotarev
|-polynomials.

0.4. Organization of the Paper

In Section 1 we list auxiliary results used in our constructions: the Borsuk
theorem, the Chebyshev theorem, the Korneichuk lemma with corollaries,
and some other special technical propositions.

Section 2 contains the proof of the main result of this paper��Theorem 2.1
describing Zolotarev |-polynomials ZB=ZB, |, r, m of the norm B.

A number of corollaries from Theorem 2.1 are derived in Section 3. We
show the existence of such a constant M=M|, r, m that for all B>M, the
Zolotarev function ZB is extremal in the Kolmogorov�Landau problem

f (m)(0) � sup, f # WrH |[0, 1], & f &C[0, 1]�B. (0.15)

In the special case of the Ho� lder modulus of continuity |:(t)=t:, we
construct the Chebyshev |-polynomial C(x)=C:, r, m(x) with a complete
(r+2)-alternance and extremal in (0.15) for B=L :=&C&C[0, 1] . Then, we
show the extremality of ZB in the problem (0.15) for all B�L.

For all sufficiently large B>0, we demonstrate the continuous dependence
of the alternance points [{i (B)]r

i=0 of ZB on B and the uniqueness of solutions
of the problem (0.15).

Finally, using specific features of the class W2H|[0, 1], we also describe
the complete (for all B>0) set of extremal functions in the problem (0.15)
for r=2.
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1. AUXILIARY RESULTS

The Korneichuk lemma describes extremal functions in the problem

|
b

a
h(t) �(t) dt � sup, h # H|[a, b], (1.1)

where � is the derivative of a simple kernel on [a, b].

Definition 1.1. Let the kernel �( } ) # L1[a, b] be endowed with the
properties: for some a$, b$ : a<a$�b$<b,

(i) �(x)<0, for a.e. x # [a, a$];

(ii) �(x)=0, for a.e. x # [a$, b$];
(1.2)

(iii) �(x)>0, for a.e. x # [b$, b];

(iv) |
b

a
�(x) dx=0.

Then the kernel 9(x)=/ �x
a �(t) dt, a�x�b, / # [&1, 1], fixed, is called

a simple kernel.
Notice that for any simple kernel 9, the equation |9(t)|= y, for 0< y<

&9&C[a, b] , has precisely two solutions: :y # (a, a$) and ;y # (b$, b). The
quantitative solution of the problem (1.1) will be given in terms of the
rearrangement of the simple kernel 9.

Definition 1.2. Let 9(x), a�x�b, be a simple kernel. Let the
function r : [a, (a$+b$)�2] � [(a$+b$)�2, b] be derived from equations

9(t)=9(r(t)), t # [a, a$],
(1.3)

r(t)=a$+b$&t, t # [a$, (a$+b$)�2].

Then, the rearrangement R(9 ; t), 0�t�b&a, of the simple kernel 9(t) is
defined as

&9&C[a, b] , t # [0, b$&a$],

R(9 ; t) :={ |9( yt)|, t # (b$&a$, b&a], (1.4)

where yt # [a, a$] is such that r( yt)& yt=t.

We also need the following properties of concave modulii of continuity |
[9, pp. 263, 264].
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Proposition 1.1. Let | be a concave modulus of continuity on R+ .
Then,

(a) at any point x>0, | has one-sided derivatives

|$&(x)= lim
h � 0+

|(x)&|(x&h)
h

, |$+(x)= lim
h � 0+

|(x+h)&|(x)
h

;

(b) each of the functions |$+ and |$& does not increase on (0, +�),
and

|$+(x)�|$&(x), x>0;

(c) | is an absolutely continuous function on R+.

In this paper we make the following choice from the equivalence class of
summable functions defining the nonincreasing derivative |$ everywhere
on R+.

Definition 1.3. Let | be a concave modulus of continuity on R+ .
We put

|$(u) := 1
2 [|$+(u)+|$&(u)], u>0. (1.5)

The following result [9, pp. 302�307] describes the derivative of extremal
functions of the problem (1.1).

Lemma 1.2. Let 9(t) :=/ �t
a �( y) dy, a�t�b, / # [&1, 1], be a simple

kernel whose derivative satisfies (1.2). Let the function r : [a, c] � [c, b],
c :=(a$+b$)�2, be defined by (1.3), and the rearrangement R(9 ; t) be intro-
duced in (1.4). Let |(t) be a concave modulus of continuity on [0, b&a].
Then,

M|(�) := sup
f # H |[a, b]

|
b

a
f (t) �(t) dt=|

b&a

0
R(9 ; t) |$(t) dt, (1.6)

and the upper bound in (1.6) is attained on the functions whose derivative is
given by the formula

d
dx

f0(x)={|$(r(x)&x),
|$(x&r&1(x)),

a�x�c,
c�x�b.

(1.7)

Note that extremal functions of the problem (1.1) are determined up to
a constant, since �b

a �(t) dt=0. Therefore,

sup
h # H |[a, b]

|
b

a
h(t) �(t) dt= sup

h # H 0
| [a, b]

|
b

a
h(t) �(t) dt. (1.8)
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From the formula (1.7) it follows that if a$=b$=c, then the derivative of
extremal function of the problem (1.1) is determined uniquely by (1.7).

We mention some corollaries from Lemma 1.2 used in this paper.

Corollary 1.2.1. Let the function f0 be defined by (1.7). Then, f0 has
the full modulus of continuity on the interval [0, b&a]:

|( f0 ; t)=|(t), 0�t�b&a. (1.9)

Proof. By (1.7), for any x : 0�x�c := 1
2 (a$+b$), we have

f0(r(x))& f0(x)=|
r(x)

c
|$(u&r&1(u)) du&|

x

c
|$(r(u)&u) du

=|
x

c
|$(r(u)&u) r$(u) du&|

x

c
|$(r(u)&u) du

=|
x

c
|$(r(u)&u) d(r(u)&u)

=|(r(x)&x). (1.10)

It remains to notice that the function r(t)&t increases from 0 to b&a, as
t decreases from c to 0. K

Corollary 1.2.2. Let 0<:�1. Let 9(t) be a simple kernel on [0, b],
and f be an extremal function in the problem

|
b

0
h(t) 9$(t) dt � sup, h # H:[0, b].

Then, for any _>0, the function h_(t)=_:f (t�_) is extremal in the problem

|
_b

0
h(t) 9$(t�_) dt � sup, h # H :[0, _b].

The proof of Corollary 1.2.2 follows either from the form (1.7) of the
derivative of extremal function in the problem (1.1) or from the observation

f (t) # H :[0, b] � _:f (t�_) # H:[0, _b].

For the proof of the following limiting property of solutions of problems
(1.1), the reader is referred to [2].

Lemma 1.3. Let S be a compact of Rd and the family of simple kernels
9s , s # S be endowed with the following properties.
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(i) The endpoints as and bs are continuous functions of s on S, and

as<a<b<bs , s # S, for some a<b.

(ii) The zero-interval of the kernel �s degenerates into a point, i.e.,
a$s=b$s , for all s # S.

(iii) The family [�s(t)=9$s(t)]s # S depends continuously on s on S in
the integral metrics in the following sense: for all s # S,

&�� s$&�� s&L1[a, b] � 0, as s$ � s,

where

�� s(x) :=�s \bs&as

b&a
(x&a)+as+ , a�x�b, s # S.

Let xs be the solution of the problem

|
bs

as

f (t) �s(t) dt � sup, f # H |[as , bs], f (as)=0.

Then, functions xs depend continuously on s on S in the uniform metrics, i.e.,
for all s # S,

&xs$&xs& C[max[as , as$
], min[bs , bs$]] � 0, as s$ � s.

The proof of Theorem 2.1 is based on the following topological result
known as the Borsuk Antipodality Theorem (cf. [5], [6]).

Theorem 1.4. Let Sn=[! : ! # Rn+1 | &!&=r], where & }& is some norm
in Rn+1, and let ' : Sn � Rn, '(!)=['1(!), '2(!), ..., 'n(!)], be a continuous
and odd ('(&!)=&'(!)) vector field on Sn. Then, there exists a vector
!� # Sn such that '(!� )=0.

The polynomial of the best approximation for a given continuous function
is characterized as follows [9, p. 48].

Theorem 1.5. Let f # C[a, b]. Then,

(a) there exists a unique polynomial pf (t)=�n
i=0 ai( f ) ti of the best

approximation for f on the interval [a, b] among the polynomials of degree
n, i.e.,

& f & pf& C[a, b]=min
p # Pn

& f & p& C[a, b] ,

where Pn is the linear space of polynomials of degree n;
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(b) the polynomial pf is the polynomial of the best approximation for
f among the polynomials of degree n, if and only if there exist n+2 points
[xk]n+2

k=1 , a�x1<x2< } } } <xn+2�b, such that

( f &pf)(xi)=(&1) i ! & f & pf& C[a, b] , i=1, ..., n+2, (1.11)

where !=!( f ) # [&1, 1], fixed.

Proposition 1.6. Let f # Cr[a, b]. If f has r zeroes (counting multiplicities),
then

& f (k)&C[a, b]�[b&a]r&k & f (r)& C[a, b] , k=0, ..., r. (1.12)

Proof. By Rolle's theorem, the derivative f (k)(t) has a zero !k on [a, b]
for k=0, ..., r&1. Then, f (k)(x)=�x

!k
f (k+1)(t) dt, a�x�b, k=0, ..., r&1.

Thus,

& f (k)&C[a, b]�(b&a) & f (k+1)& C[a, b] , (1.13)

implying (1.12).K

We also need the following result [9, p. 92] on the existence of a
polynomial perfect spline satisfying the zero boundary conditions.

Proposition 1.7. Let r # N. There exists a unique perfect polynomial spline

Yr(x)=
xr

r !
+

2
r !

:
r

i=1

(&1) i (x&ti)
r
++ :

r&1

i=0

ai xi

with r knots [ti]r
i=1 , 0<t1< } } } <tr<1, satisfying the boundary conditions

Y (k)
r (0)=Y (k)

r (1)=0, k=0, ..., r&1. In addition, Yr(x)>0, x # (0, 1).

The following two results play an important role in the final phase of the
proof of Theorem 2.1.

Proposition 1.8. Let f # WrH |[0, 1]. Then, there exist such constants
E1=E1(r) and E2=E2(r, |) that

| f (r)(0)|�E1 & f &L1 [0, 1]+E2 . (1.14)
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Proof. Let Yr be the perfect spline from Proposition 1.7. Then,

& f &L1[0, 1]�|
1

0
f (x) Y (r)

r (x) dx=(&1)r |
1

0
f (r)(x) Yr(x) dx

=(&1)r |
1

0
[ f (r)(x)& f (r)(0)] Yr(x) dx+(&1)r f (r)(0) |

1

0
Yr(x) dx.

(1.15)

Thus, using the inclusion f (r) # H|[0, 1] and the inequality (1.15), we
obtain the estimate (1.14) with E1 :=&Yr&&1

L1 [0, 1] and E2 :=&Yr &&1
L1 [0, 1] }

&| } Yr& C[0, 1] . K

Proposition 1.9. Let A>1, | be a concave modulus of continuity, and
the function f (t) # ACr+1[0, A] be endowed with the properties

(i) f (r)(t)>0, for a.e. t # [0, A];

(ii) f (r&1) # H|[0, 1];

(iii) f (r)(t)=1, t # [1, A]; (1.16)

(iv) f has r zeroes ['0
l ]r

l=1 satisfying inequalities

0�'0
r <'0

r&1< } } } <'0
2�1<'0

1 :=A.

Then, for each k=1, ..., r&1, the derivative f (k) has precisely r&k simple
zeroes ['k

l ]r&k
l=1 ,

0�'k
r&k<'k

r&k&1< } } } <'k
2<'k

1 , (1.17)

and there exist constants Er, k such that

'k
1>Er, kA>1, 0�k�r&1, (1.18)

for all sufficiently large A 's.

Proof. By the property (1.16), (iv), f (k) has at least r&k distinct zeroes
on [0, A] for 1�k�r&1. On the other hand, by (1.16), (i), f (r&1) is
monotone on [0, A]. Thus, f (k) can have at most r&k zeroes counting
multiplicities. Therefore, Rolle's theorem implies that f (k) has precisely
r&k simple zeroes ['k

i ]r&k
i=1 enumerated in the decreasing order as in

(1.17). We also observe that by (1.16), (iv) and Rolle's theorem, zeroes
['k

i ]r&k
i=2 lie on the interval [0, 1].
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The verification of the property (1.18) of rightmost zeroes ['k
1]r&1

k=0

proceeds by induction.
For k=0 the statement is true by (1.16), (iv): '0

1 :=A.
Suppose that we have proved the statement for any k=0, ..., n�r&2,

i.e.,

'k
1>Er, k } A>1, k=0, ..., n. (1.19)

Let us prove the property (1.18) for k=n+1.
First, f (n)('n

2)= f (n)('n
1)=0. Therefore,

0=|
'n

1

' n
2

f (n+1)(!) d!=|
'1

n+1

'n
2

f (n+1)(!) d!+|
'n

1

' 1
n+1

f (n+1)(!) d!, (1.20)

where 'n+1
1 is the rightmost zero of f (n+1)(t). By Rolle's theorem, it lies

between 'n
1 and 'n

2 .
By Rolle's theorem, the other r&n&2 zeroes belong to the interval [0, 'n

2].
Thus, the function f (n+1)(t) changes its sign on the interval ['n

2 , 'n
1] only

at the point 'n+1
1 .

Therefore, we can infer from (1.20) that

|
'1

n + 1

'n
2

| f (n+1)(!)| d!=|
'n

1

'1
n+1

| f (n+1)(!)| d!= 1
2 & f (n+1)&L1[' n

2 , 'n
1 ] . (1.21)

Let

Ik :=min
p # Pk

&p&L1 [0, 1] , k # N, (1.22)

where Pk is the space of all polynomials of degree k with the leading
coefficient \1�k !. Then,

min
p # Pk

&p&L1 [a, b]=(b&a)k+1 Ik . (1.23)

By (1.16), (iii), f (r)(t)=1, t # [1, A], i.e., f (n+1)(t) is a polynomial of degree
r&n&1 on the interval [1, A] with the leading coefficient 1�(r&n&1)!.
Thus, by (1.23),

& f (n+1)& L1[1, 'n
1 ]�Ir&n&1('n

1&1)r&n. (1.24)
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Consecutively using the equalities (1.21), the inclusion 'n
2 # [0, 1], the

inequality (1.24), and the inductive assumption (1.19) for k=n, we derive
the estimates

|
'1

n + 1

'n
2

| f (n+1)(!)| d!= 1
2 & f (n+1)&L1 [' n

2 , 'n
1 ]� 1

2 & f (n+1)& L1 [1, 'n
1]

� 1
2 Ir&n&1('n

1&1)r&n� 1
2 Ir&n&1(Er, n } A&1)r&n.

(1.25)

In a more compact form,

& f (n+1)& L1 ['n
2 , '1

n + 1 ]� 1
2 Ir&n&1(Er, n } A&1)r&n. (1.26)

We have already shown that each of the functions f (k) has a zero on [0, A]
for k=0, ..., r&1. Thus, applying Proposition 1.6 and using properties
(1.16), (ii), (iii) of the function f, we obtain the inequality

& f (n+1)& C[0, A]�Ar&n&2 & f (r&1)&C[0, A]�Ar&n&2(A+|(1))�2Ar&n&1,

(1.27)

for A>|(1). Consequently,

& f (n+1)& L1 ['n
2 , '1

n+1 ]�& f (n+1)&C[0, A] ('n+1
1 &'n

2)�2Ar&n&1('n+1
1 &'n

2).

(1.28)

Combining the estimates (1.26) from below and (1.28) from above for the
integral norm of the function f (n+1)(t), we derive the following estimate for
the length of the interval ['n

2 , 'n+1
1 ]:

'n+1
1 &'n

2� 1
4 Ir&n&1An&r+1(Er, n } A&1)r&n. (1.29)

Due to the inclusion 'n
2 # [0, 1], the inequality (1.29) implies that for all

sufficiently large A 's,

'n+1
1 � 1

4Ir&n&1An&r+1(Er, n } A&1)r&n&1�Er, n+1 A>1, (1.30)

with the constant Er, n+1 depending only on r, n. K

In conclusion, we state the properties of generating kernels K(t) and
F(t) (see, e.g., [8]).

Let r, m : 0<m�r, be integers.
Let [{i]r

i=0 be such that

0={0<{1< } } } <{r�1. (1.31)
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Derive [:i=:i ({0 , ..., {r , m)]r
i=0 from the system of linear equations

:
r

i=0

:i{k
i =$m, k , k=0, ..., r. (1.32)

Put

K(u)=&
1

(r&1)!
:
r

i=1

:i ({i&u) r&1
+ ,

(1.33)

F(u)=
1
r !

:
r

i=1

:i ({i&u) r
+.

Proposition 1.10. Let r, m # N : 0<m�r, the points [{i]r
i=0 be as in

(1.31), the coefficients [:i]r
i=0 be defined in (1.32), and the kernels K(t),

F(t) be defined by (1.33). Then,

I. sign :i=(&1) i+m, i=0, ..., r ;

II. for 0<m<r, the kernel F(t) is simple on [0, {r], and for some
c # (0, 1),

sign K(t)=(&1)r+m, t # (0, c); sign K(t)=(&1)r+m+1, t # (c, 1);

III. for m=r, K(t) does not change the sign: K(t)<0, t # [0, 1).

2. CONSTRUCTION OF ZOLOTAREV |-POLYNOMIALS

2.1. Sufficient Conditions of Extremality in the Kolmogorov�Landau Problem

Fix r, m # N : 0<m�r. Let 0=: {0<{1<{2< } } } {r :=b�1.
Let [:i]r

i=0 be the solutions of the following system of linear equations:

:
r

i=0

:i{k
i =$m, k , k=0, ..., r. (2.1)

In (2.1), we follow the convention [{0]0=00 :=1. Put

K(u)=&
1

(r&1)!
:
r

i=0

:i ({i&u) r&1
+ ,

(2.2)

F(u)=
1
r !

:
r

i=0

:i ({i&u) r
+.

352 SERGEY K. BAGDASAROV



File: 640J 308614 . By:DS . Date:18:08:01 . Time:04:34 LOP8M. V8.0. Page 01:01
Codes: 2544 Signs: 1283 . Length: 45 pic 0 pts, 190 mm

Fix f # WrH|[0, 1]. The Taylor's formula reads

f ({)= :
r&1

k=0

f (k)(0)
k !

{k+
1

(r&1)! |
1

0
f (r)(u)({&u)r&1

+ du, 0�{�1.

(2.3)

We distinguish two cases in deriving the formula for f (m)(0).

Case 1. 0<m<r.

From (2.1)�(2.3) we find the formula for the value of the m th derivative
f (m) at the origin:

f (m)(0)=m ! :
r

i=0

:i f ({i)+m ! |
b

0
f (r)(u) K(u) du. (2.4)

By Proposition 1.10, the kernel F(t)=�t
1 K( y) dy is simple in the sense of

Definition 1.1. Therefore, by Korneichuk's Lemma 1.2,

sup
h # H |[0, b]

|
b

0
h(t) K(t) dt= sup

h # H 0
| [0, b]

|
b

0
h(t) K(t) dt=|

b

0
R(F ; t) |$(t) dt,

(2.5)

where the classes H |
0 [a, b] are defined in (0.12), and the rearrangements

R(9 ; t) of simple kernels 9 are introduced in (1.4). The Korneichuk
lemma also provides the formula for the derivative of the function h*(t)
realizing the supremum in (2.5):

d
dt

h*(t)={(&1)r+m+1 |$(\(t)&t),
(&1)r+m+1 |$(t&\&1(t)),

0�t�c,
c�t�{r ;

(2.6)

where c is a unique zero of the kernel K(t) on the open interval (0, b), and
the function \ : [0, c] � [c, b] is derived from the equations

F(t)=F(\(t)), 0�t�c. (2.7)

From (2.4) and (2.5) we obtain the estimate

| f (m)(0)|�m ! \ :
r

i=0

|:i |+ & f & C[0, 1]+m! |
b

0
R(F ; t) |$(t) dt. (2.8)

Case 2. m=r.

In this case, by (2.1), �b
0 K(u) du=&1�r ! �r

i=0 :i{r
i =&1�r ! . Therefore,

by (2.1)�(2.3),

f (r)(0)=r ! :
r

i=0

:i f ({i)+r ! |
b

0
[ f (r)(u)& f (r)(0)] K(u) du. (2.9)
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Notice that f (r)(x)& f (r)(0) # H |
0 [0, 1], if f # WrH|[0, 1]. In Proposition 1.10

we showed that K(u)<0, 0�u<b. Therefore,

sup
h # H 0

|[0, 1]
|

b

0
h(u) K(u) du=&|

b

0
|(u) K(u) du=|

b

0
|$(u) F(u) du. (2.10)

The equality sign is attained in (2.10), if and only if

f (r)(u)& f (r)(0)=&|(u), 0�u�b. (2.11)

Consequently, by (2.9) and (2.10),

| f (r)(0)|�r ! \ :
r

i=0

|:i |+ & f &C[0, 1]+r ! |
b

0
|$(t) F(t) dt. (2.12)

By Proposition 1.10, in both cases (&1) i+m :i>0, i=0, ..., r. Combining
these two cases and taking into account our observation (2.5), we give
sufficient conditions for a function f # WrH |[0, 1] to realize the equality
sign in inequalities (2.8) for 0<m<r and (2.12) for m=r:

(i) f ({i)=(&1) i+m & f & C[0, b] , i=0, ..., r ;
(2.13)

(ii) sup
h # H 0

|[0, b]
|

b

0
h(x) K(x) dx=|

b

0
[ f (r)(x)& f (r)(0)] K(x) dx.

Therefore, the problem is to choose the collection of points [{i]r
i=0

simultaneously endowed with two properties: [{i]r
i=0 are the knots of the

generating kernel K for the function f (r)(x) and the alternance points of
the function f on the interval [0, b].

2.2. Characterization of Zolotarev |-Polynomials

Theorem 2.1. Let r, m # N : 0<m�r, and B>0. There exists a set of
points [{i (B)={i (B, r, m, |)]r

i=0 , 0={0(B)<{1(B)< } } } <{r(B)�1, and
the function ZB=ZB, r, m, | # WrH|[0, 1] with the properties

(i) sup
h # H 0

|[0, {r (B)]
|

{r (B)

0
h(t) KB(t) dt=|

{r (B)

0
[Z (r)

B (t)&Z (r)
B (0)] KB(t) dt,

where the kernel KB is defined by (2.1), (2.2) for [{i={i (B)]r
i=0;
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(ii) ZB({i (B))=(&1) i+m &ZB&C[0, {r (B)]z=(&1) i+m B, i=0, ..., r ;
(2.14)

(iii) if {r(B)<1, then
d
dt

ZB({r(B))=0.

Proof. Fix A>4 and =, 0<=<1�r. Let

Sr
A :={s=(s1 , ..., sr+1) # Rr+1 } :

r+1

i=1

|si |=A= . (2.15)

We generate collections of points [tj=tj(s)]r+1
j=0 , [t� j=t� j(s)]r+1

j=0 , [Tj=Tj (s)]r
j=0 ,

and [{j={j (s)]r
j=0 :

t0(s)=0, tj (s)= :
j

i=1

|si | , j=1, ..., r+1;

t� 0(s)=0, t� j (s)=min[tj (s), 1], j=1, ..., r+1;
(2.16)

T0(s)=0, Tj (s)=
tj (s)+=j

1+=r
, j=1, ..., r ;

{0(s)=0, {j (s)=
t� j (s)+=j

1+=r
, j=1, ..., r.

By (2.16),

{i (s)&{i&1(s)�
=

1+=r
, Ti (s)&Ti&1(s)�

=
1+=r

, i=1, ..., r, s # S r
A ,

(2.17)

and

|t� i (s)&{i (s)|�=r, |Ti (s)&ti (s)|<=rA, i=0, ..., r, s # Sr
A . (2.18)

Also by (2.16), the points [{i (s)]r
i=0 belong to the interval [0, 1]:

0�{i (s)�
t� i (s)+=i

1+=r
�

1+=i
1+=r

�1, i=1, ..., r, s # Sr
A .

Let [:i (s)=:i (s, r, m, =)]r
i=0 satisfy the system of linear equations

:
r

i=0

:i[{i (s)]k=$m, k , k=0, ..., r. (2.19)

As before, in (2.19) we follow the convention [{0(s)]0=00 :=1.
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Let us introduce kernels Ks and Fs :

Ks(t)=&
1

(r&1)!
:
r

0=1

:i (s)(t&{i (s)) r&1
+ ;

(2.20)

Fs(t)=
1
r !

:
r

0=1

:i (s)(t&{i (s)) r
+.

Let the function fs # H |
0 [0, {r(s)] be extremal in the problem

|
{r (s)

0
h(t) Ks(t) dt � sup, h # H |

0 [0, {r(s)]. (2.21)

If 0<m<r, by Lemma 1.2, the derivative (d�dx) fs(x) is expressed by the
formula

d
dt

fs(t)={(&1)r+m+1 |$(\s(t)&t),
(&1)r+m+1 |$(t&\&1

s (t)),
0�t�c(s),
c(s)�t�{r(s),

(2.22)

where c(s) is a unique zero of Ks on the open interval (0, {r(s)), and the
function \s : [0, c(s)] � [c(s), {r(s)] is derived from the equations

Fs(t)=Fs(\s(t)), 0�t�c(s).

According to (2.11), for m=r we put

fs(t)=&|(t), 0�t�{r (s). (2.23)

The extension gs(t) of fs(t) from [0, {r(s)] to [0, A] is defined by the
formula

gs(t)={ fs(t),
(&1)r+m+1 [|({r(s))+t&{r(s)],

0�t�{r(s),
{r(s)�t�A.

(2.24)

Notice that by the definitions (2.22) and (2.24), the function gs*(t) is
monotone on [0, A], and

(&1)r+m+1 d
dt

gs(t)>0, for a.e. t # [0, A]. (2.25)

Also by (2.22) and (2.24),

gs # H |~ [0, A], |~ (t) :=|(t)+t, t # R+. (2.26)
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Let us introduce the function

Vs(x)=
1

(r&2)! |
A

0
(x&t) r&2

+ gs(t) dt, 0�x�A. (2.27)

Notice that V (r&1)
s (x)= gs(x), 0�x�A, and V (i)

s (0)=0, i=0, ..., r&1.
Let qs(t) be the polynomial of degree r&1 interpolating Vs(t) at r distinct

points [Ti (s)]r
i=1:

qs(Ti (s))=Vs(Ti (s)), i=1, ..., r. (2.28)

Put

Ws(x) :=Vs(x)&qs(x), 0�x�A. (2.29)

By (2.28),

Ws(Ti(s))=0, i=1, ..., r. (2.30)

By our observation (2.25), sign W (r)
s (t)=sign(d�dt) gs(t)=(&1)r+m+1 for

a.e. t # [0, A]. Thus, by the Rolle's theorem, all zeroes [Ti (s)]r
i=1 are

simple, and

sign Ws(t)=(&1) i+m, t # (Ti&1(s), Ti (s)), i=1, ..., r+1. (2.31)

Put

2i (s) :=|
t� i (s)

t� i&1 (s)
|Ws(t)| dt, i=1, ..., r. (2.32)

Next, for s=(s1 , ..., sr+1) # Sr
A , we define the function Us on the interval

[0, 1]:

Us(t)=(&1) i+m [sign si] |Ws(t)|, t� i&1(s)�t�t� i (s), i=1, ..., r+1.

(2.33)

Let

H� s(t)=|
t

0
Us(x) dx, 0�t�1. (2.34)

Let us introduce the constants

C :=Ar&1[A+|(A)], 3=min {1, rB _C+
4rB
A &

&1

= . (2.35)
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Put

%s :=max[3, t� r(s)], s # S r
A . (2.36)

We introduce the polynomial ps(t)=�r&1
i=0 ai (s) ti of the best approximation

for the function H� s(t) on the interval [0, %s]:

&H� s& ps &C[0, %s]
= min

p # Pr&1

&H� s& p&C[0, %s]
, (2.37)

where Pr&1 is the space of polynomials of degree at most r&1. Put

Hs(t)=H� s(t)& ps(t), t # [0, 1], (2.38)

and

D(s) := :
r

i=1

[sign si] 2i (s)&
2rB
A

:
r+1

i=1

si . (2.39)

The mapping } : Sr
A � Rr is defined as

}(s)=(a1(s), ..., ar&1(s), D(s)), s # S r
A . (2.40)

In the following lemma we prove the continuity of the mapping }.

Lemma 2.1.1. Let the mapping } on the sphere Sr
A be defined in (2.40).

Then, the mapping s [ }(s), s # Sr
A , is continuous.

Proof. From inequalities (2.17) it follows that the Vandermonde
determinant of the system of linear equations (2.19) never vanishes on Sr

A .
The Kramer's formula for the solution of (2.19) coupled with the continuity
of the mapping s [ [{i (s)]r+1

i=0 implies the continuous dependence of
coefficients [:i (s)]r

i=0 on s.
Also by (2.19), {r(s)�r�(1+=r)==: d, s # Sr

A .
Let us introduce the dylated version of the kernel Ks :

K� s(t) :=Ks \{r(s) t
d + , 0�t�d. (2.41)

The continuity of the mapping s [ ([:i (s)]r
i=0 , {r(s)) implies the continuous

dependence of the family of kernels [K� s]s # S r
A

on s in the metrics L1[0, d]
(and even C[0, d]). Therefore, we can apply Lemma 1.3 to the family of
kernels Ks(t) and functions fs(t) extremal in the problem (2.21). Then,
Lemma 1.3 and the definition (2.24) of the extension gs(t) guarantee the
continuity of the mapping s [ gs in C[0, A].
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Then, by the definition (2.27), the mapping s [ Vs is continuous in
C[0, A]. From the separation property (2.17) of the points [Ti (s)]r

i=1 and
the Lagrange formula for the interpolating polynomial qs(t) we deduce the
continuity of the mapping s [ Ws in C[0, A]. In particular, there exists
such a constant M that

&Us& L� [0, 1]=&Ws&C[0, 1]�M, for all s # S r
A . (2.42)

Next, using the definitions (2.33) of the function Us and (2.34) of the
function H� s(t), we derive the chain of inequalities

&H� s1
&H� s2

&C[0, 1]�&Us1
&Us2

& L1 [0, 1]

�2(M &s1&s2 & l r+1
1 +&Ws1

&Ws2
&L1 [0, 1]), (2.43)

which proves the continuity of the mapping s [ H� s in C[0, 1]. Then, the
continuous dependence on s of coefficients [ai (s)]r

i=0 of the polynomial ps

of the best approximation for H� s on [0, %s] follows from the uniqueness of
ps and separation of the length %s of the interval [0, %s] from zero: %s�3,
s # Sr

A .
It remains to prove the continuity of the mapping s [ D(s) defined in

(2.39), (2.32). The following proposition accomplishes this objective.

Proposition 2.1.2. For each s=(s1 , s2 , ..., sr+1) # Sr
A , let [2i (s)]r

i=1 be
defined in (2.32). Then, for i=1, ..., r,

2i (s) � 0, as si � 0. (2.44)

Proof. By (2.30), Ws has r distinct zeroes [Ti (s)]r
i=1 on the interval

[0, A]. Therefore, by the Rolle's theorem, the derivative W (k)
s has a zero on

[0, A] for k=0, ..., r&1. Recall that by (2.29), (2.27), W (r&1)
s (t)= gs(t)+:(s),

0�t�1, where :(s) :=q (r&1)
s (t). Then, applying Proposition 1.6 and

taking into account the inclusion (2.26), we infer that for k=1, ..., r&1,

&Ws& C[0, A]� } } } �Ak &W (k)
s &C[0, A]� } } } �Ar&1 &W (r&1)

s &C[0, A]

�Ar&1(A+|(A))=: C. (2.45)

Thus, by the definition (2.32) and (2.45),

2i (s)=&Ws& L1 [t� i&1 (s), t� i (s)]�&Ws &C[0, A] |si |�C |si |, i=1, ..., r. (2.46)

The estimates (2.46) imply (2.44). K

Proposition 2.1.2 completes the proof of continuity of the mapping
s [ }(s). K
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From the definitions (2.34) of H� s and (2.39) of D(s) one can readily
observe that the mapping s [ }(s) is odd: }(&s)=&}(s), s # Sr

A . An
application of the Borsuk's theorem (Theorem 1.4) to the mapping }
guarantees the existence of a point satisfying the equation }(s)=0, s # Sr

A ,
or equivalently,

D(s)=0, ai (s)=0, i=1, ..., r, s # Sr
A . (2.47)

Fix a solution s* of the equation (2.47) and put

ti*=ti (s*), t� i*=t� i (s*), i=1, ..., r+1;
(2.48)

{i*={i (s*), T i*=Ti (s*), i=1, ..., r.

Lemma 2.1.3. Let [%s]s # S r
A

be introduced in (2.36). Then,

%s*=t� r*. (2.49)

Proof. Suppose, on the contrary, that t� r*<%s* . By the definition (2.35),
in this case, %s*=3�1, and t� r* :=min[tr* , 1]=tr*.

Let s*=(s1* , ..., s*r+1). From the equation D(s*)=0 it follows that

:
r

i=1

[sign si*] 2i (s*)&
2rB
A

:
r

i=1

si*=
2rB
A

s*r+1 . (2.50)

Let us estimate the left-hand side of this equation from above and the
right-hand side from below.

By (2.46) and our assumption tr*=t� r*=�r
i=1 |si* |<3, we have

} :
r

i=1

sign si* 2i (s*)&
2rB
A

:
r

i=1

si* }�\C+
2rB
A + :

r

i=1

|si* |<\C+
2rB
A + 3.

(2.51)

On the other hand,

|s*r+1 |=t*r+1&tr*=A&tr*>A&3. (2.52)

Combining Eq. (2.50) and inequalities (2.51) and (2.52), we conclude that

\C+
2rB
A + 3>

2rB
A

(A&3)

or

3>2rB \C+
4rB
A +

&1

. (2.53)
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This contradiction with the definition (2.35) of 3 shows that t� r*>3, and

%s*=max[3, t� r*]=t� r*. K (2.54)

By the property (2.25), the function Hs* is not a polynomial of degree
r&1. In particular, &Hs*& C[0, t� r* ]>0.

The Chebyshev theorem (Theorem 1.5) implies that the function Hs(t)
has r+1 points of alternance [zi]r

i=0 , 0�z0<z1< } } } <zr�t� r* , on the
interval [0, t� r*]=[0, %s*]. Therefore, the derivative (d�dt) Hs*(t) has at
least r&1 points [zi]r

i=1 of sign change on the interval [0, t� r*].
On the other hand, by the definition (2.38) and Eq. (2.47) for s=s*,

d
dt

Hs*(t)=
d
dt

H� s*(t)& :
r&1

i=1

ai (s*) iti&1=Us*(t), 0�t�1. (2.55)

By the definition (2.33), the function Us*(t)=(d�dt) Hs*(t) can have at most
r&1 points [t� i*]r&1

i=1 of sign change on the interval [0, t� r*]. This argument
shows that (d�dt) Hs*(t) has precisely r&1 points of sign change on
[0, t� r*], and

zi=t� i*=ti* , i=1, ..., r&1, z0=0, zr=t� r*. (2.56)

Thus, for / # [&1, 1],

Hs*(t� i*)=(&1) i / &Hs*&C[0, t� r* ] , i=0, ..., r. (2.57)

The mappings s [ }(s) and s [ Hs are odd. Therefore, we can assume
without loss of generality (if necessary, considering &s*) that /=(&1)m in
(2.57). By (2.57) with /=(&1)m and the definition (2.32) of [2i (s)]r

i=1 ,
we have

2(&1) i+m &Hs*&C[0, t� r* ]=Hs*(t� i*)&Hs*(t� *i&1)

=(&1) i+m sign si* |
t� *i

t� *i&1

|Ws*(t)| dt

=(&1) i+m sign si* 2i (s*), i=1, ..., r. (2.58)

Consequently, (2.58) and (2.55) with (2.33) lead us to the conclusion that

(A) sign si*=1, i=1, ..., r ;

(B) 2i (s*)=2 &Hs*&C[0, t� r* ] , i=1, ..., r ; (2.59)

(C)
d
dt

Hs*(t)=(&1) i+m |Ws*(t)|, t� *i&1�t�t� i*, i=1, ..., r+1.
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Our objective is to show that

sign s*r+1=sign s*r+1(A)=1, (2.60)

for all sufficiently large A 's.
In order to accomplish this goal, we need to eliminate the other cases

sign s*r+1=&1 and sign s*r+1=0.
Let us assume that sign s*r+1=&1. In this case, we can compute D(s*)

using the properties (2.59) and the definition (2.39):

D(s*)=2r &Hs*&C[0, t� r* ]&
2rB
A

tr*+
2rB
A

(A&tr*)

=2r &Hs*& C[0, t� r* ]&
2rB
A

(2tr*&A). (2.61)

Therefore, the equation D(s*)=0 and (2.61) imply that

&Hs*&C[0, t� r* ]=
B
A

(2tr*&A). (2.62)

We derive two inequalities from (2.62),

tr*(A)�
A
2

(2.63)

and, using the inclusion tr* # [0, A],

&Hs*&C[0, t� r*]�B. (2.64)

If we assume that s*r+1=0, then

tr* :=t*r+1&|s*r+1 |=t*r+1 :=A. (2.65)

Therefore,

D(s*)=2r \&Hs*& C[0, t� r* ]&
B
A

tr* +=2r(&Hs*& C[0, t� r* ]&B)=0. (2.66)

Thus,

&Hs*& C[0, t r* ]=&Hs*&C[0, 1]=B. (2.67)
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The pairwise combinations of properties (2.63) and (2.65), (2.64) and
(2.67) lead us to the conclusion that we have two properties in the case
sign s*r+1�0:

(A) &Hs*& C[0, 1]�B;
(2.68)

(B) tr*�
A
2

.

Notice that by (2.68), (B), and our choices A>4 and =<1�r,

(i) t� r*=min[tr*, 1]=1, and {r*=
t� r*+=r
1+=r

=
1+=r
1+=r

=1;

(2.69)

(ii) T r*=
tr*+=r
1+=r

�
A�2+=r

1+=r
>

A
4

>1.

Let us show that the inequalities (2.68), (A) and (2.68), (B) are mutually
incompatible.

Indeed, by the properties (2.59), the definition (2.32) and (2.68), (A),

&Ws*& L1 [0, 1]=&Ws*&L1 [0, t� r* ]= :
r

i=1

2i (s*)=2r &Hs*&C[0, 1]�2rB. (2.70)

By (2.27), (2.29), and (2.69), (i)

W (r&1)
s* (t)= gs*(t)+:(s*) # H|[0, {r*]=H |[0, 1]. (2.71)

Therefore, Proposition 1.8 provides two constants E1=E1(r) and E2=E2(r, |)
such that

|W (r&1)
s* (0)|�E1 &Ws*&L1[0, 1]+E2�2rE1B+E2 . (2.72)

On the other hand, by the definition (2.25) and the relations (2.69), (2.71),
the function Ws*(t) is endowed with the properties

(i) (&1)r+m+1 W (r)
s* (t)=

d
dt

gs*(t)>0, for a.e. t # [0, A];

(ii) W (r&1)
s* (t) # H |[0, 1];

(iii) W (r)
s* (t)=(&1)r+m+1, t # [1, T r*]; (2.73)

(iv) Ws* has r zeroes [T i*]r
l=1:

0�T 1*<T 2*< } } } <T*r&1�1<
A
4

<T r*.
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Applying Proposition 1.9 to the function (&1)r+m+1 Ws*(t) and using the
property (2.69), (ii) we obtain the following estimate for the only zero 'r&1

1

of the function W (r&1)
s* :

'r&1
1 >E3 T r*> 1

4 E3 A>1, for all A�A0 , (2.74)

for some constant E3=E3(r, |) dependent only on r, |, and some A0>0.
However, by the definition (2.24) of the function W (r&1)

s* ,

W (r&1)
s* (t)= gs*(t)+:(s*)=(&1)r+m+1 (t&'r

1), t # [1, A], (2.75)

and W (r&1)
s* (t) is monotone on the whole interval [0, A]. Therefore, by

(2.75) and the estimate (2.74),

|W (r&1)
s* (0)|�|W (r&1)

s* (1)|='r&1
1 &1� 1

4E3 A&1. (2.76)

The juxtaposition of the estimates (2.72) and (2.76) for |Ws*(0) leads us to
the conclusion that the inequalities become incompatible for all

A>A� :=E&1
3 (1+2rE1B+E2).

This contradiction shows that

sign s*r+1(A)=1, for all A>A� . (2.77)

Fix some A>A� . The computation of D(s*)=D(s*, A) produces the equations

0=Ds*=2r &Hs*& C[0, t� r*]&2r } B. (2.78)

Finally,

&Hs*, A&C[0, t� r* ]=B. (2.79)

In order to take the limit as = � 0, we need to show that the points
[t� i*=t� i*(=)]r

i=0 remain uniformly separated:

|t� i*(=)&t� *i&1(=)|�$, i=1, ..., r, for all =>0. (2.80)

Indeed, combining the estimate (2.45) with properties (2.57) and (2.79),
we infer that for all i=0, ..., r,

2B=|Hs*(=)(t� i*(=))&Hs*(=)(t� *i&1(=))|�&Hs*(=) &C[0, A] |t� i*(=)&t� *i&1(=)|

=&Ws*(=) &C[0, A] |t� i*(=)&t� *i&1(=)|�C |t� i*(=)&t� *i&1(=)|. (2.81)

Thus, we can put $=2B�C in (2.80).
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The inequalities (2.45) for the norms [&W (k)
s* &C[0, A]]r&1

k=0 and an application
of the Arzela�Ascoli theorem enable us to choose a subsequence [=k]k # N ,
=k a 0, as k A �, such that

lim
k � �

ti*(=k)=ti , i=0, ..., r ;
(2.82)

lim
k � �

Ws*(=k)(t)=W(t) in Cr[0, 1].

Then, by the inequalities (2.18),

lim
k � �

{i (=k)=t� i :=min[ti , 1], lim
k � �

Ti (=k)=ti , i=0, ..., r. (2.83)

Also, by our observation (2.56), Ti=t� i=ti , i=0, ..., r&1. Put

U(t)=(&1) i+m |W(t)|, t� i&1�t�t� i , 1�i�r+1;
(2.84)

H(t)=|
t

0
U( y) dy, 0�t�1,

so U=limk � � Us*(=k) in L1[0, 1], and H=limk � � Hs*(=k) in C[0, 1]. The
comparison of the properties (2.59), (C) and (2.31) combined with the
limiting relations (2.83) leads us to the conclusion that for t # [t� i&1 , t� i],
i=1, ..., r+1,

d
dt

H(t)=U(t)=(&1)i+m |W(t)|=(&1) i+m [(&1) i+m W(t)]=W(t).

(2.85)

Therefore, H # WrH |[0, t� r], and

H (k)(t)=W (k&1)(t), t # [0, 1], k=1, ..., r. (2.86)

By (2.80), the points [t� i]r
i=0 are separated by the constant $. Let the

coefficients [:i]r
i=0 be determined from the system of linear equations

:
r

i=0

:i[t� i]k=(&1)m $m, k , k=0, ..., r, (2.87)

and the kernel K be introduced by the formula

K(t)=&
1

(r&1)!
:
r

i=0

:i (t� i&t)r&1
+ . (2.88)
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It also follows from the property (2.80) and the definition (2.20) that

lim
k � �

Ks*(=k)(t)=K(t) in C[0, 1]. (2.89)

Therefore, we can apply Lemma 1.3 to the family of functions

fs*(t)=Ws*(=k)(t)&Ws*(=k)(0), 0�t�{r*(=k), k # N,

extremal in problems (2.21). Lemma 1.3 implies that

sup
h # H 0

|[0, t� r]
|

t� r

0
h(t) K(t) dt=|

t� r

0
[H (r)&H (r)(0)] K(t) dt. (2.90)

From the properties (2.57) with /=(&1)m and (2.79) of the functions
Hs*(=) we infer that

H(t� i)=(&1) i+m &H(t� i)&C[0, t� r]
=(&1) i+m B. (2.91)

The point tr becomes the r th zero of the derivative (d�dt) H(t)=W(t) on
the interval [0, 1), if t� r=tr , i.e., tr<1.

It remains to rename the extremal functions and the points:

{i :=t� i , i=0, ..., r ; ZB(t) :=H(t), KB(t)=K(t), t # [0, t� r].

(2.92)

The extension of the function Z (r)
B (t) to the entire interval [0, 1] can be

given by the formula

Z (r)
B (t)=Z (r)

B ({r)+(&1)r+m+1 [|(t)&|({r)], t # [{r , 1]. (2.93)

By Corollary 1.2 and (2.93), the function Z(r)
B has the full modulus of

continuity on [0, 1]:

|(Z (r)
B ; t)=|(t)={|(Z (r)

B ; t), 0�t�{r ;
|Z(r)(t)&Z(r)(0)|.

(2.94)

The derivatives [Z (k)
B (t)]r&1

k=0 are extended to [0, 1] by continuity.
The proof of Theorem 2.1 is completed. K

In conclusion, we remark that from the definition of the kernel K(t) in
(2.1), (2.2) for [{i={i (B)] r

i=0 it follows that the kernel K(t)=Km(t)
depends on m, 0<m�r. Then, the Korneichuk formula (2.6) (0<m�r)
and (2.11) for the rth derivative Z(r)

B (t) imply that the family of Zolotarev
|-polynomials [ZB=ZB, r, m, |]B>0 is dependent on m in the case of
nonlinear modulii of continuity |.
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3. COROLLARIES OF THEOREM 2.1

Fix r, m # N : 0<m�r.
Throughout this section, [{i (B)]r

i=0 is the set of alternance points of the
function ZB=ZB, |, r, m on the interval [0, {r(B)], and the kernel KB(x),
0�x�1, is defined by (2.1), (2.2) for the specified collection [{i={i (B)]r

i=0.

3.1. The Uniqueness Property of Zolotarev |-Polynomials

In the following corollary we prove the uniqueness of the solution of the
problem

f (m)(0) � sup, f # WrH|[0, 1], & f &C[0, {r (B)]�B. (3.1)

Corollary 3.1. Let B>0. The function ZB is a unique solution of the
problem (3.1).

Proof. By Theorem 2.1, ZB is a solution of the problem (3.1). From the
identities (2.4) for 0<m<r and (2.9) for m=r we deduce the following
necessary and sufficient conditions for a function f� to be extremal in the
problem (3.1):

(i) f� ({j (B))=(&1)m+ j B, j=0, ..., r ;
(3.2)

(ii) sup
h # H 0

| |
{r (B)

0
h(x) KB(x) dx=|

{r (B)

0
[ f� (r)(x)& f� (r)(0)] KB(x) dx,

By the Korneichuk lemma, the extremal function in (3.2), (ii) is unique:

f� (r)(x)& f� (r)(0)=Z (r)
B (x)&Z (r)

B (0), 0�x�{r(B) (3.3)

Therefore,

f� (x)=ZB(x)+ :
r

i=0

cixi, 0�x�{r(B), ci # R, i=0, ..., r. (3.4)

However, by (3.2), (i), the difference f� (x)&ZB(x) vanishes at r+1 distinct
points [{i (B)]r

i=0. Consequently, the coefficients of the polynomial �r
i=0 cixi

= f� (x)&ZB(x) are zeroes. K

3.2. Zolotarev |-Polynomials with r Alternance Points on [0, 1]

Let us introduce the class

WrH|[B] :=[ f # WrH |[0, 1] | & f &C[0, 1]�B]. (3.5)

In the following corollary we show that {r(B)=1 for all sufficiently
large B 's.
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Corollary 3.2. Let the class WrH|[B] be defined in (3.5). There
exists such a constant M=M|, r, m>0 that {r(B)=1 for all B>M, and

sup
f # WrH | [B]

f (m)(0)=Z (m)
B (0), for all B>M. (3.6)

Proof. Let us introduce the set 1=1(B, r, m, |) # R+:

1 :={B>0 } d
dt

ZB({r(B))=0= . (3.7)

By the assertion (iii) of Theorem 2.1, if {r(B)<1, then (d�dt) ZB({r(B))=0,
and B # 1. Therefore,

B � 1 � {r(B)=1 and
d
dt

ZB({r(B)){0. (3.8)

Lemma 3.2.1. Let the set 1 be introduced by (3.7). Then,

(A) inf
B # R+"1

B>0; (B) sup
B # 1

B<+�. (3.9)

Proof. Let us show that 1 is nonempty. Indeed, otherwise, {r(B)=1 for
all B>0. Then, by Corollary 1.2.1, all functions Z (r)

B have the full modulus
of continuity on [0, {r(B)]=[0, 1] : |(Z (r)

B ; t)=|(t), 0�t�1, and

(&1)r+m+1 [Z (r)
B (1)&Z (r)

B (0)]=|(1), for all B>0.

The Arzela�Ascoli theorem enables us to choose such a sequence Bk a 0, as
k A �, that limk � � ZBk

=Z in C[0, 1]. Then, the contradicting properties
&Z&C[0, 1]=0 and |Z(r)(1)&Z(r)(0)|=|(1) of the limiting function Z prove
that our assumption was wrong. Thus, the set 1 is nonempty and supB # 1 B>0.

On the other hand, if B # 1, then the derivative (d�dt) ZB(t) has r distinct
zeroes [{i (B)]r

i=1 on [0, {r(B)]. Thus, Z (r)
B has a zero on [0, {r(B)], and

by Proposition 1.6,

B=&ZB&C[0, {r (B)]�[{r(B)]r &Z (r)
B &C[0, {r (B)]�|(1). (3.10)

Let us define the constant M=M(|, r, m):

M :=sup
B # 1

&ZB& C[0, 1] . (3.11)

By (3.8), {r(B)=1, B # R+"1. In particular, {r(B)=1 for all B>M. Therefore,

ZB({i (B))=(&1) i+m &ZB&C[0, 1]=(&1) i+m B, for all B>M, (3.12)

implying the extremal property (3.6) of the function ZB for B>M. K
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We remark that by (3.8), functions ZB have the extremal property (3.6)
for all B # R+"1.

The following result follows immediately from Corollaries 3.1 and 3.2 on
the uniqueness of the solution of the problem

f (m)(0) � sup, f # WrH|[B],

for all B�M.

Corollary 3.2.2. Let [{i (B)]r
i=0 be the alternance points of the extremal

functions ZB . Then, the mapping B [ [{i (B)]r
i=0 is continuous on the interval

[M, +�).

Let us identify the set 1, the constant M, and the function ZM in the case
of a linear modulus of continuity |(t)=t. Let Cr(x) be the Chebyshev
polynomial of degree r+1 defined in (0.2),

Lr :=&Cr&C[0, 1]=
2&2r&1

(r+1)!
, {Ti=

1
2 \1+cos

?i
r+1+=

r+1

i=0

be the collection of alternance points of Cr(x) on the interval [0, 1], and
Kr :=Lr } T&(r+1)

r . Then, 1=(0, Kr], M=Kr , and for B # 1, the polynomial
ZB is given by the formula (0.4). The following section describes a similar
phenomenon in Ho� lder classes.

3.3. Zolotarev |-Polynomials in Ho� lder Classes

Fix :, 0<:�1, and consider the Ho� lder classes WrH:[0, 1] :=
WrH |:[0, 1], where |:(t)=t:.

The extremal functions [ZB=ZB, r, m, |:
]B>0 have the following specific

feature. For a fixed B>0, let {i={i (B), i=0, ..., r, and

Z(t)=ZB(t), K(t)=KB(t), 0�{r(B). (3.13)

For all ;>0, put B[;] :=;r+:B, {i[;]=;{i , i=0, ..., r, and

Y;(t)=;r+:Z(t�;), V;(t)=;r&1&mK(t�;), 0�t�{r[;]. (3.14)

By the definitions (2.1), (2.2) of the kernel K(t) and (3.14) of the kernel V;(t),

V;(t)= :
r

i=0

:i[;]({i[;]&t) r&1
+ , (3.15)
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and the coefficients [:i[;]=;&m:i]r
i=0 satisfy the equations

:
r

i=0

:i[;]({i[;]) j=$m, j , j=0, ..., r. (3.16)

Therefore, for any function f # WrH:[0, {r[;]], the familiar identity holds:

f (m)(0)= :
r

i=0

:i f ({i[;])+|
{r[;]

0
f (r)(t)V;(t) dt. (3.17)

By Corollary 1.2.2, applied to the dylation V; of the kernel K, and the
assertion (i) of Theorem 2.1,

sup
h # H 0

|[0, {r [;]]
|

{r [;]

0
h(t) V;(t) dt=|

{r [;]

0
(Y;(t)&Y;(0)) V;(t) dt. (3.18)

By the assertion (ii) of Theorem 2.1 and the definition (3.14) of the
function Y; ,

Y;({i[;])=(&1) i+m &Y;&C[0, {r [;]]=(&1) i+m B[;], i=0, ..., r.

(3.19)

The properties (3.18) and (3.19) along with the identity (3.17) imply that
the function Y;(t) has the extremal property

Y (m)
; (0)=sup[ f (m)(0) | f # WrH:[0, {r[;]], & f &C[0, {r [;]]�B[;]].

(3.20)

This property will be used in the proof of the following results.

Lemma 3.3. Let the set 1=1(r, m, |:) be introduced in (3.7) and
M=Mr, m, |:

be the constant defined in (3.11) for |(t)=|:(t). Let [{i (B)=
{i (B, r, m, :)]r

i=0 be the points of alternance of the function ZB=ZB, r, m, |:
.

Then,

M # 1 and {r(M)=1.

Proof. For each B # 1, let us introduce the function XB(t) and the
kernel WB(t):

XB(t)=[{r(B)]&r&: ZB({r(B)t), 0�t�1;
(3.21)

WB(t)=[{r(B)]m+1&r KB({r(B)t), 0�t�1.
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Note that

d
dt

XB(1)=[{r(B)]1&r&: d
dt

ZB({r(B))=0, for all B # 1. (3.22)

Let AB=&XB&C[0, 1]=[{r(B)]&r&: B. As we explained in (3.18)�(3.20),
the function XB is extremal in the problem

f (m)(0) � sup, f # WrH:[AB]. (3.23)

First, let us show that the inclusion M # 1 implies the property {r(M)=1.
Indeed, if {r(M)<1, then AM>M and, consequently, AM � 1. Therefore,
by Corollaries 3.1 and 3.2, {r(AM)=1 and the function ZAM

is a unique
solution of the problem (3.23) for B=M. Thus, XM=ZAM

. Then, by the
property (3.22), (d�dt) ZAM

(1)=(d�dt) XM(1)=0, and the definition (3.7)
of the set 1 implies AM # 1. Then, the contradicting inclusions AM # 1 and
AM � 1 prove that {r(M)=1.

It remains to eliminate the case M � 1. In this case, let us consider such
a subsequence [Bi]i # N that Bi # 1, i # N, lim i � � Bi=M, and

lim
i � �

({0(Bi), ..., {r(Bi))=(T0 , ..., Tr);

lim
i � �

XBi
=X (t) in Cr[0, 1]; (3.24)

lim
i � �

WBi
(t)=W(t)= :

r

i=0

:i (Ti&t) r&1
+ in Cr&1[0, 1],

where the coefficients [:i]r
i=0 satisfy Eq. (2.1) for [{i=Ti]r

i=0.
Let D=MT &r&:

r . By Lemma 1.3, applied to the family of kernels
[WBi

]i # N , the function X (t) inherits the properties of functions [XBi
]i # N :

(i) X (Ti)=(&1) i+m &X&C[0, 1]=(&1) i+m D, i=0, ..., r ;

(ii) sup
h # H 0

| [0, 1]
|

1

0
h(t) W(t) dt=|

1

0
[X (r)(t)&X (r)(0)] W(t) dt; (3.25)

(iii)
d
dt

X (1)=0.

Therefore, the function X (t) is extremal in the problem

f (m)(0) � sup, f # WrH:[D]. (3.26)

Since D�M, our assumption M � 1 implies that D � 1, as well. Therefore,
by Corollary 3.2, the function ZD is a unique solution of the problem
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(3.26). Thus, X(t)=ZD(t). Then, the property (3.25), (iii) implies that
D # 1. Once again, the contradicting inclusions D # 1 and D � 1 lead us to
the conclusion that our assumption M � 1 was wrong.

3.4. Chebyshev |-Polynomials in WrH :[0, 1]

In the following corollary we construct the analog C(x)=Cr, m, :(x) of
the Chebyshev polynomial in the Ho� lder space WrH :[0, 1]. Like in the
linear case |(t)=At, we describe all extremal functions in the problem

f (m)(0) � sup, f # WrH|[B] (3.27)

for B�L.

Corollary 3.4. Let 0<:�1.

1. There exist a constant L=L:, r, m>0, the collection of points
[Ti=Ti (r, m, :)]r+1

i=0 : 0=T0<T1< } } } <Tr<Tr+1=1, and the function
C(x)=C:, r, m(x) endowed with the properties

(i) C(Ti)=(&1) i+m &C& C[0, 1]=(&1) i+m L i=0, ..., r+1;

(ii) sup
h # H :

0 [0, Tr]
|

Tr

0
h(r)(t) K (t) dt=|

Tr

0
[C (r)(t)&C (r)(0)] K(t) dt, (3.28)

where K (t) is defined by (2.1), (2.2) for [{i=Ti]r
i=0;

(iii) |(C (r) ; t)=|:(t), 0�t�1.

2. For any B�L there exists a collection of points [{i={i(r, m, :, B)]r
i=0:

0={0<{1< } } } <{r�1, and a function ZB(t) # WrH |[0, 1] with the
properties

(i) ZB({i)=(&1) i+m &ZB&C[0, 1]=(&1) i+m B, i=0, ..., r ;

(ii) sup
h # H :

0 [0, {r]
|

{r

0
h(r)(t) KB(t) dt=|

{r

0
[Z (r)

B (t)&Z (r)
B (0)] KB(t) dt, (3.29)

where KB (t) is defined by (2.1), (2.2);

(iii) |(Z (r)
B ; t)=|:(t), 0�t�1.

3. For any B�L, the function ZB(x)=Z:, r, m, B(x) is extremal in (3.27).
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Proof. Let M=M(r, m, |:) be the constant defined in (3.11) for |=|: .
By Lemma 3.3, {r(M)=1, so the function ZM is defined on the whole
interval [0, 1]. Let

Z(r)(t)={Z (r)
M (t),

Z (r)
M (0)+(&1)r+m+1 |(t),

0�t�1;
t>1.

(3.30)

Then, the extension Z(t) of the function ZM(t) from the interval [0, 1] to
the entire half-line R+ is given by the formula

Z(t)= :
r&1

i=0

Z (i)
M(0)
i !

ti+
1
r ! |

t

0
Z(r)(x)(t&x)r&1

+ dx, t # R+. (3.31)

Let us show that Z # WrH :(R+). By the definition, we have the inclusions
Z(r)| [0, 1] # H:[0, 1] and Z(r)| [1, +�) # H :[1, +�). It remains to verify
the inequality

|Z(r)(t2)&Z(r)(t1)|�|:(t2&t1), for t1 # [0, 1], t2>1. (3.32)

In this case, the definition (3.30) of Z(r) and the concavity of |:(t) lead us
to the following chain of inequalities:

|Z(r)(t2)&Z(r)(t1)|=|Z(r)(t2)&Z(r)(1)|+|Z(r)(1)&Z(r)(t1)|

�[|:(t2)&|:(1)]+|:(1&t1)

�[|:(t2&t1)&|:(1&t1)]

+|:(1&t1)=|:(t2&t1) (3.33)

Moreover, by the definition (3.30) and Corollary 1.2.1 of the Korneichuk
lemma, the function Z(r)(t) has the full modulus of continuity on R+:

|(Z (r); t)=|(t)={|(Z (r)
M ; t),

|Z(r)(t)&Z(r)(0)|,
0�t�1;
t>1.

(3.34)

For each ; # [0, 1] let us introduce the function P; # WrH|(R+):

P;(t) :=;r+:Z(t�;), t # R+. (3.35)

Put

M[;] :=;r+:M, {i[;] :=;{i (M), (3.36)
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where M=&ZM &C[0, 1] and [{i (M)]r
i=0 are the points of alternance of ZM .

The points [{i[;]]r
i=0 are the alternance points of P; on the interval

[0, ;]:

P;({i[;])=(&1)i+m &P;& C[0, ;]=(&1) i+m M[;]. (3.37)

By our observation (3.20), the restriction P; | [0, ;] has the extremal property

P(m)
; (0)=sup[ f (m)(0) | f # W rH:[0, ;], & f &C[0, ;]�M[;]]. (3.38)

Also note that by Corollary 3.3, the derivative (d�dt) P;(t) has the rth zero
at the point {r[;]=;:

d
dt

P;(;) :=;r+:&1 d
dt

ZM(1)=0, since M # 1.

From the monotonicity of P (r)
; (t) on R+ and Rolle's theorem it follows that

the derivative (d�dt) P;(t) vanishes only at r points [{i[;]]r
i=1 and

sign
d
dt

P;(t)=(&1) i+m+1, t # ({i[;], {i+1[;]), i=0, ..., r, (3.39)

where {r+1[;] :=�. In particular, the function (&1)r+m P;(t) strictly
decreases from &P;&C[0, ;] to &�, as t increases from {r[;] to +�.

Let us introduce the parameter k(;) by the equation

P;(1)=k(;) P;({r[;]). (3.40)

By the definition (3.35) of the function P; and the property (3.37),

k(;)=P;(1)[P;({r[;])]&1

=;r+:ZM(1�;)[(&1)r+m ;r+:M]&1

=(&1)r+m ZM(1�;) M &1. (3.41)

This expression for k(;) coupled with the property (3.39) for i=r implies
that the function k(;) is continuous and strictly decreases from 1 to &�,
as ; decreases from 1 to 0. In particular, there exists such a ;* # (0, 1) that

k(;*)=&1, and &1�k(;)�1, if ;*�;�1. (3.42)

Therefore, by (3.39) for i=r and (3.42), the monotonicity of P;(t) on the
interval [{r[;], 1] implies that for all ; # [;*, 1], and t # [{r (B), 1]

|P;(t)|�max[ |P;({r[;]), |k(;)| } |P;({r[;])|]=&P;&C[0, ;] . (3.43)
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Thus, we have the following refinements of the property (3.37),

P;({i[;])=(&1) i+m &P;& C[0, 1]=(&1) i+m M[;], i=0, ..., r, (3.44)

and the property (3.38),

sup
f # W rH : [M[;]]

f (m)(0)=P (m)
; (0). (3.44)

Finally, by (3.37) and (3.42), P;*(1)=k(;*) P;({r[;])=(&1)r+m+1

&P;*&C[0, 1] , so the function P;*(t) has precisely r+2 points of alternance
[{i[;*]]r

i=0 and {r+1[;*]=1. Put

C(x) :=P;*(x), x # [0, 1], L :=&C&C[0, 1] . (3.45)

Summarizing, the family of functions P; , ;*�;�1, constitutes the set of
solutions of the problem (3.27) for B # [L, M]=[&C& C[0, 1] , &ZM &C[0, 1]].
By Corollary 3.2, the functions ZB , B>M, are extremal in the problem
(3.27) for B>M.

3.5. Full Solution of the Kolmogorov�Landau Problem in W2H |[0, 1]

Before characterizing extremal functions in the problem

f (m)(0) � sup, f # W2H|[B] (3.46)

for m=1, 2, and all B>0, we make the following observation on the
possibility of functional extensions from the class W2H |[0, 1] to the class
W2H |(R+) without increasing the L�-norm.

Suppose that the derivative (d�dt) g(t) of a function g # W2H|[0, 1] has
two zeroes t1 , t2 , 0�t1<t2�1. Let 2=t2&t1 . Then, the extension
E(g ; t1 , t2 ; } ) of the function g( } ) from the interval [0, t2] to the entire
half-line R+ is given by the formula

E( g; t1 , t2 ; t)

g(t), 0�t�t2 ;

={ g(t&2n 2), t2+(2n&1) 2�t�t2+2n 2, n # N;

g(2t2+2(n+1) 2&t), t2+2(n&1) 2�t�t2+(2n&1) 2.

(3.47)

The properties (d�dt) g(t1)=(d�dt) g(t2)=0 assure the continuity of
(d�dt) g(t) on R+. In addition,

|(E (2)(g ; t1 , t2 ; } ) ; t)={|(g ; t),
|(g ; t2),

0�t�t2;
t>t2 .

(3.48)

375ZOLOTAREV |-POLYNOMIALS IN WrH | [0, 1]



File: 640J 308637 . By:DS . Date:18:08:01 . Time:04:34 LOP8M. V8.0. Page 01:01
Codes: 2646 Signs: 1689 . Length: 45 pic 0 pts, 190 mm

Thus, E(g ; t1 , t2 ; t) # W2H |(R+). Also notice that

&E(g ; t1 , t2 ; } )&L� (R +)=&g& C[0, t2] . (3.49)

Therefore, we extended the function g to the entire half -line R+ without
leaving the class W2H |(R+) and increasing the L� norm.

Fix m, m=1, 2, and B>0. In Theorem 2.1 for r=2 we proved the
existence of such a function ZB with three points of alternance [{i (B)]2

i=0

that ZB is extremal in the problem

f (m)(0) � sup, f # W2H|[0, 1], & f &C[0, {2 (B)]�B. (3.50)

Therefore, if {2(B)=1, then the function ZB is extremal in the problem
(3.46).

By the assertion (iii) of Theorem 2.1, (d�dt) ZB({2(B))=0, if {2(B)<1.
Besides, the derivative (d�dt) ZB(t) vanishes at the interior point {1(B) of
extremum of ZB(t). Therefore, by (3.51), the restriction E(ZB ; {1(B),
{2(B) ; t)| [0, 1] is extremal in problem (3.47), if {2(B)<1.

Kolmogorov�Landau problems in functional classes W2H|(R) and
W2H |(R+) are solved in [4].

4. CONCLUDING REMARKS

The complete solution of the Kolmogorov�Landau problem

f (m)(0) � sup, f # W r+1
� [0, 1], & f &C[0, 1]�B,

in the Sobolev class W r+1
� [0, 1] was given by S. Karlin [7] who constructed

the family of extremal Zolotarev perfect splines [ZB]B>0. For each B>0,
the function ZB of the norm B has n=n(B)�0 knots and oscillates
n+r+1 times between B=&ZB&C[0, 1] and &B. It can be seen from
the corresponding numerical differentiation formulae (see [8]) that the
complete solution of the Kolmogorov�Landau problem in WrH |[0, 1],
requires an appropriate generalization of the notion of perfect splines in
functional classes WrH |[0, 1].

In our paper [2] we give the characterization of the structure and the
description of various properties of extremal functions in the problem

|
b

a
h(t) �(t) dt � sup, h # H |

0 [a, b], (V)
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for kernels � # L1[a, b] with a zero mean on [0, 1] and a finite or ordered
countable set of points of sign change on the interval [a, b], &��a<
b�+�. The extremal functions of the problem (V) feature as the rth
derivatives of solutions of the problem

f (m)(0) � sup, f # WrH |(I ), & f &L� [I]�B, (P.1)

for 0<m<r and I=[0, 1], R, R+ . The problem (P.1) for m=r and
I=[0, 1] or I=R+ necessitated our solution in [3] of the problem (V) for
kernels with nonzero means.

The solution and corresponding numerical differentiation formulae in the
pointwise Kolmogorov�Landau problem

f (m)(!) � sup, f # W r+1
� [0, 1], & f &C[0, 1]�B, (P.2)

were found by A. Pinkus [11]. In [3] we also describe the extremal
functions of the problem

|
0

a
h(t) �1(t) dt+|

b

0
h(t) �2(t) dt � sup, h # H |[a, b], h(0)=E # R,

(VV)

for a<0<b, and integrable kernels �1 and �2 with finite or ordered
countable set of points of sign change on [a, 0] and [0, b], respectively. As
an example of an application of the extremal functions of the problem (VV),
we mention the version of the problem (P.2) of maximizing the rth derivative
of functions from WrH |[a, b] at an interior point ! # (a, b). Since extremal
functions of problems (V) and (VV) generalize standard perfect polynomial
splines; we call them the perfect |-splines.

Finally, the formulations of some results and referrences to our papers in
the area of Kolmogorov�Landau inequalities in functional classes WrH|[I]
may be found in [3] and [4].

ACKNOWLEDGMENTS

We express our gratitude to B. S. Mityagin for attracting our attention to the Kolmogorov
inequalities and much useful advice and many recommendations. We also thank V. M. Tihomirov
for his suggestion of extremal problems in WrH | and the referees for their careful reading and
helpful suggestions, which enabled us to improve the paper.

377ZOLOTAREV |-POLYNOMIALS IN WrH | [0, 1]



File: 640J 308639 . By:DS . Date:18:08:01 . Time:04:35 LOP8M. V8.0. Page 01:01
Codes: 5118 Signs: 1957 . Length: 45 pic 0 pts, 190 mm

REFERENCES

1. N. I. Akhiezer, ``Theory of Approximation,'' Ungar, New York, 1956.
2. S. K. Bagdasarov, Maximization of functionals in H|[a, b], Mat. Sbornik, to appear.
3. S. K. Bagdasarov, Extremal functions of integral functionals in H|[a, b], submitted for

publication.
4. S. K. Bagdasarov, ``Chebyshev Splines and Kolmogorov Inequalities,'' Operator Theory:

Advances and Applications, Birkha� user, Basel, 1997, to appear.
5. K. Borsuk, Drei Sa� tze u� ber die n-dimensionale euklidische Spha� re, Fundam. Math. 20

(1933), 177�191.
6. R. A. DeVore, H. Kierstead, and G. G. Lorentz, A proof of Borsuk's theorem, in ``Lecture

Notes in Mathematics,'' Vol. 1332, pp. 195�202, Springer-Verlag, Berlin.
7. S. Karlin, Oscillatory perfect splines and related extremal problems, in ``Studies in Spline

Functions and Approximation Theory'' (S. Karlin, C. A. Micchelli, A. Pinkus, and I. J.
Schoenberg, Eds.), pp. 371�460, Academic Press, New York, 1976.

8. S. Karlin, Some one-sided numerical differentiation formulae and applications, in ``Studies in
Spline Functions and Approximation Theory'' (S. Karlin, C. A. Micchelli, A. Pinkus, and I.
J. Schoenberg, Eds.), pp. 485�500, Academic Press, New York, 1976.

9. N. P. Korneichuk, ``Exact Constants in Approximation Theory,'' Encyclopedia of
Mathematics and Its Applications, Vol. 38, Cambridge Univ. Press, Cambridge�New York,
1990.

10. S. M. Nikol'skii, La se� rie de Fourier d'une fonction dont le module de continuite� est donne� ,
Dokl. Akad. Nauk SSSR 52 (1946), 191�194.

11. A. Pinkus, Some extremal properties of perfect splines and the pointwise Landau problem on
the finite interval, J. Approx. Theory 23 (1978), 37�64.

12. E. I. Zolotarev, Application of elliptic functions to problems on functions deviating least or
most from zero, Zapiski St.-Petersburg Akad. Nauk 30, No. 5 (1877). [in Russian; reprinted
in ``Collected Works'' Vol. II, pp. 1�59, Izdat. Adad. Nauk SSSR, Leningrad, 1932]

378 SERGEY K. BAGDASAROV


